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Why glass in laser applications? : Advantages

Crystal (e. g. Nd:YAG, Ti:Sapphire)
 High laser gain
 High strength
 High thermal conductivity

Glass (e. g. LG760, LG950)
 Nearly unlimited dimensions ( casting, redraw process)
 High homogeneity (optical, chemical)
 Types with possibility for chemical tempering available
 Processable with standard tooling
 Comparatively good price
 Larger emission width
 Properties a function of composition and/or processing. 

(minimization of disadvantages for each specific situation)
 Properties of glass composition thoroughly studied. 

(optimized glass for a particular laser quickly identified)
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Glass (e. g. LG760, LG950)
 Poor thermo-mechanical properties:
 high thermal expansion
 low fracture toughness
 low thermal conductivity
 changes in refractive index with temperature 
 Soft; scratches easily
 Phosphate chemically not stable (absorbs water and 

converts to phosphoric acid)
 Laser damage:
 nonlinear index and self focusing
 bulk damage from inclusions 
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Why glass in laser applications? : Disadvantages

Crystal (e. g. Nd:YAG, Ti:Sapphire)
 Usually single crystals with limited 

dimensions
 Normally expensive
 Stress birefringence
 optical inhomogeneity
 concentration profile
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 High power ultra-short pulse (broadband) systems

LIDT
 Slabs typically uncoated, but challenge for AR on big rods
 Typical LIDT spec for 10 ns pulses @ 1550 nm : 10 to 30 J/cm2

Glass type
Silicate     Phosphate

(Pt-free)

Snitzer (1961) first laser glass

Continuous 
melting (1997) 

(NIF)
NIF/Beamlet 
(1997)Nova/Novette 

(1983-1987)Janus (1973)

Argus (1975)

Shiva (1977)
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Nd3+ doped broadband glasses for high power applications
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… have enabled cutting edge laser projects
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NIF, 2001-2004

NOVA 1984-1987 Beamlet 1991Novette, 1981-1983

Laser MegaJoule,
2001-2004
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Applications
 Medical (e. g. surgery, dermatology, epilation)
 Defence (e.g. range finders)

Advantages
 Absorption in the cornea, lens, and vitreous humour of the eye (easier 

replaceable than the retina)
 Superior beam quality demonstrated with Er-Yb doped phosphate glass
 Stable operation with passive/no cooling in the  –40 to +50°C range
 Easy co-doping with sensitizers for more efficient pumping (Yb, Cr, Ce) 

LIDT
 Typical LIDT spec for 10 ns pulses @ 1550 nm : 5 to 25 J/cm2

Er3+ and Yb3+ co-doped glasses for “eye-safe” lasers
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Polishing
 Material is soft and scratches easily, fissures
 It can easier take on contamination such as polishing grains/oxide
 The aqueous slurry chemically attacks the glass

Cleaning
 Hydrolysis of P2O5 to phosphoric acid at the surface (also issue for stocking)
 Temporal drying of contamination induces inhomogeneous chemical attack and digs after cleaning
 Grains are more engraved and not easily removed
 Necessary thorough cleaning can scratch the surface

Coating
 Low adhesive strength of coating (adhesive tape test)
 Large difference in thermal expansion between coating and glass
 Humidity can penetrate pinholes and micro fractures, chemically attack the glass & burst the coating

All this can additionally contribute to lowering the LIDT.

The issues with processing phosphate glass
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“S” polarization laser resistance of Brewster angle polarizing 
beamsplitter as a function of deposition process, coating 
material, substrate, and cleaning method (1064 nm, 10 ns)
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C. Stolz, SPIE 8885, 888509 (2013) C. Stolz, SPIE 7504, 75040S (2009) 

Distribution of laser resistance as a function of high index 
material (mirrors 786 nm, 200 fs)

LIDT in Literature

LIDT competition of the Boulder Damage Symposium
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LIDT in Literature

Milam, Appl. Opt., vol. 21, no. 20, p. 3689 (1982)

Article data

 Hundreds of articles have been scanned to determine 
the state of the art. (e. g. almost 50 years of SPIE 
proceedings of  Boulder Damage Symposium)

 A lot of immediate information: e. g. HfO2 better than 
TiO2, annealing better than not annealing, but mostly 
only qualitative because particular

 Some articles contain lots of interesting data never 
properly statistically analyzed.

 No joint statistical analysis of data from various 
sources.
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LIDT in Literature

LIDT of mirrors (values scaled to 800 nm wavelength)

Maxima in literature and of competitors

Customer specifications & demands
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LIDT in Literature

LIDT of mirrors (values scaled to 800 nm wavelength)

Typical spec (AR): (10 to) 20 J/cm2

Goal (AR): 50 J/cm2

Dashed line factor 3 lower as 
“guide to the eye” for AR values

Maxima in literature and of competitors

Customer specifications & demands
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Design of experiment and statistical analysis
 Usually a method to quantitatively acquire data on correlations with minimal experimental effort 
 Then mathematically describe behavior in multi-dimensional parameter space (with interactions, 

probabilities, confidence intervals)

full factorial design fractional factorial design response surface design
2n data points 2(n-i)+1 data points

pa
ra

m
et

er
 2

parameter 1

LIDT in Literature
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LIDT in literature

As if there was a Design Of Experiment … 
 LIDT data and process parameter information from several articles
 Scaled in wavelength and pulse length
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LIDT in literature
 … analyzed statistically
 Some examples :
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LIDT in literature

Results for silicate glasses   (in literature basically N-BK7 & fused silica)

 Wet-chemical etching before finishing

 Super polishing (surface defects) and reduction of sub-surface damages 

 Thorough cleaning (sequence of agents, rubbing, ultra-sonic)

 Pre-deposition ion etching (e. g. Ar+)

 Electron beam evaporation or ion beam sputtering, not magnetron sputtering or IAD

 Low deposition rate

 Medium to high oxygen pressure

 Not too high deposition temperature

 Layer materials: low: SiO2, high: Sc2O3, HfO2, Ta2O3, but not TiO2

 Final thermal annealing

 Optical design to reduce maxima of electric field distribution

 Optical design with maxima of electric field distribution within layers, not at interfaces

 Optical design with maxima of electric field distribution within layers of large bandgap materials
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Minimizing subsurface damages
 Scratches and fissures lower the LIDT
 Key LIDT influence parameter: (sub-)surface damage density, (nano-)scratch/fissure density
 Process parameters: slurry grain material, slurry grain size distribution, pad type, pH value, …
 Polishing: Sequence of various material removing steps: Grinding/lapping, pre-polishing, finishing
 Each operation induces subsurface damages, the size of which depends on the grain size
 Each subsequent operation shall remove all damages induced by previous one.

16

Parameters: Sub-surface damages

0.1 – 1 µm

1 – 100 µm

1 – 200 µm

Polished / re-deposition layer
Defect layer (subsurface damages)

Deformed layer

Defect free bulk

D. W. Camp, SPIE Vol. 3244, p. 356 (1998)
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Minimizing subsurface damages
 Scratches and fissures lower the LIDT
 Key LIDT influence parameter: (sub-)surface damage density, (nano-)scratch/fissure density
 Process parameters: slurry grain material, slurry grain size distribution, pad type, pH value, …
 Polishing: Sequence of various material removing steps: Grinding/lapping, pre-polishing, finishing
 Each operation induces subsurface damages, the size of which depends on the grain size
 Each subsequent operation shall remove all damages induced by previous one.

 several types of polished samples tested:
o Conventional pitch polishing vs. low sub-surface damage pitch polishing
o Pitch vs. double side, colloidal silica vs. ceria
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Parameters: Sub-surface damages

Lapping Pre-polishing Finishing

Polished / re-deposition layer
Defect layer (subsurface damages)
Deformed layer

Defect free bulkD. W. Camp, SPIE Vol. 3244, p. 356 (1998)

0.1 – 1 µm

1 – 100 µm

1 – 200 µm
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Parameters: High index layer material

Coating material
 Low index material of choice: SiO2

 High index material: trade-off between index 
and bandgap

 Materials tested:

o HfO2 vs. Ta2O5 vs. AL2O3

L. Gallais, SPIE 8530, 85300K (2012); 
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Parameters: layer sequence / coating design

Optical design
o Simple solution (alternating high & low index) vs.
o 1st layer low index
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Coating temperature and annealing
 Phosphate glass: Heat conductivity is very low and thermal expansion big.
 Glass is usually very strong under compressive stress. Glass “breaks”/rips under tensile stress. 

Thus, heating glass up is OK – cooling it down bears high risks of destruction for large components. 
 Under this point of view, depositing under low temperature is advantageous. Parameters:

o Depositing at low temperature (only high enough for stabilizing against heating up by process)
o At elevated temperature (300°C)

 Particularly, coatings deposited  at low temperature yield higher LIDT
o after thermal annealing than vs.
o before annealing

Parameters: coating temperature and annealing
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Parameters

Substrate material

 Phosphate laser glass vs.
 fused silica and N-BK7

Cleaning & etching
 Different ways of “best effort” cleaning phosphate glass (choice of detergents, timing)
 With/without pre-deposition ion etching
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Results

0

10

20

30

40

50

60

70

80

90

Aug-13 Jan-14 Aug-14 Jan-15 Aug-15 Feb-16 Aug-16 Jan-17

10
00

-o
n-

1 
LI

D
T 

[J
/c

m
2 ]

1064 nm 1550 nm

Achieved level of LIDT of 
antireflective coatings on 
phosphate glass

Typical customer 
expectation for LIDT of 
antireflective coatings

 Scaled to 10 ns:

LG-760 rod (2wt% Nd3+, ca. Ø25x250 mm3)

double side AR coated

with LIDT > 50 J/cm2 (10 ns, 1064nm)


