

Nonlinear Optical Coatings at High Intensities

T. Amotchkina, M. Trubetskov, K. Fritsch, O. Pronin, F. Krausz, and V. Pervak

OCLA Symposium, 12.04.2017

Motivation

• Coatings for laser applications: dispersive mirrors, beamsplitters, input and output couplers

All calculations of spectral characteristics are carried out in the frame of the well-known linear theory

$$n = n_0 + n_2 I$$

- Study of the pre-damage behavior of dielectric multilayers;
- Revealing nonlinear effects at high intensities;
- Estimation of nonlinear additions of the refractive indices of coating layers
- A step forward to designing optical coatings with predictable nonlinear properties

$$n = n_0 + n_2 I \implies R = R_0 + \Delta R$$

- ΔR modulation depth
- Edge Filter with an extremely steep spectral reflectance in the vicinity of $\lambda = 1030 \text{ nm}$
- High sensitivity to any refractive index variation;
- High sensitivity to the AOI variation

Production of experimental samples

- Layer Materials: Nb₂O₅/SiO₂
- Thickness 8.7 mkm, 69 layers
- Deposition: magnetron sputtering (Helios plant)
- Time monitoring

Reflectance at the central wavelength of 1030 nm vs. angle of incidence

The ratio R₀:T₀ can be set up by adjusting the angle of incidence MPC

Experimental setup

- Yb:YAG thin disk regenerative amplifier
- Repetition rate 50 kHz
- Pulse duration is 1 ps
- Beam radius 180 μ m

Initial ration $R_0:T_0$ is specified by adjusting the incident angle at low incident power of 100 mW.

 $R = \frac{P_{ref}}{P}, T = \frac{P_{tr}}{P}$

Intensity dependent measurements

• Optical chopper wheel, duty cycle 10%

$$R(I) = \frac{P_{ref}}{P}, \quad T(I) = \frac{P_{tr}}{P}, \quad I = \frac{2P}{f_{rep}r^2\tau}$$

- Calculations of R/T of the multilayers in the nonlinear regime are based on the solution of the system of Maxwell equations describing the propagation of light through a multilayer system.
- Dependence of the refractive index along the coating coordinate is taken into account:

 $\left|\Delta n(z) = n_2 I(z) = n_2 \left| E(z) \right|^2$

Example: Dependence of nonlinear refractive index variation along the coating coordinate at different AOI

Comparison of experimental modulation depth values without thermal effect and model calculations.

Determination of Kerr coefficient

Kerr coefficient of Nb₂O₅

$$n_2 = 2.2 \cdot 10^{-15} \frac{cm^2}{W}$$

$$\Delta R(I) \approx \Delta R_{nl} \left(I \right) + \Delta R_{\text{Thermal}} \left(P, \Delta t \right)$$

$$\Delta R_{Thermal} = R \left(d_1 + \alpha_H \Delta t, d_2 + \alpha_L \Delta t, ...; n_H + \beta_H \Delta t, n_L + \beta_L \Delta t \right) - R_0$$

- Novel dielectric edge filters exhibiting pronounced nonlinear increase of reflectance at high intensities have been demonstrated;
- The filters have been carefully characterized with the help of laser measurements as well as with photometric data;
- The nonlinear coefficient n₂ for Nb₂O₅ thin film material has been determined

Funding and Acknowledgements

- T. Amotchkina receives funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie agreement No 657596.
- DFG Cluster of Excellence, "Munich Centre for Advanced Photonics," (<u>http://www.munich-photonics.de</u>).
- The authors are grateful to D. Ehberger, A. Ryabov, BoHan Chen, Y. Morimoto and P. Baum for providing and maintaining the laser source