

Overview of the sol-gel antireflective coatings performances and production rate for CEA high power laser facilities

SYMPOSIUM ON OCLA 2017 Eric Lavastre

12th APRIL 2017

CONTEXT HIGH POWER LASER FACILITIES AT CEA-CESTA

CEA-CESTA : LOCATION AND ACTIVITIES

Activities

- Management of physics experiments in large facilities such as facilities of thermomechanical tests, anechoic chambers, X-ray generators...
- Operating of high power lasers facilities (LMJ and PETAL)
- Hubs of competitiveness
- Route des Lasers (lasers and photonics)
- Aerospace Valley

LABORATORY OF OPTICAL TECHNOLOGIES (LTO)

Missions

- **Specification** of optical components ⇒ to divide in elementary fabrication stages
- **Fabrication follow-up** of optical components
- Optical logistics : transit, import/export, storage management (location, quantity, performances preservation during the storage...)
- To Lead the **R&D** of optical processes

On behalf of

- High power lasers facilities at CEA: (LIL), LMJ, PETAL
- Other CEA labs
- Technical and Scientific studies or valorization

LTO team

- 14 permanent people and ~10 students
- People are skilled according to elementary optical fabrication stages

SOL-GEL COATINGS

ANTIREFLECTIVE COATINGS FOR THE LMJ FACILITY

MAIN ANTIREFLECTIVE COATINGS SPECIFICATIONS

Optical parts used at λ =1053nm (1 ω)

- **Transmittance per side** > 99.8%
- **Imperfections** (*ISO10110-7*) < 20×0.3 / 25×0.275 / 30×0.25 according to the parts
- Laser damage densities at 3ns < 0.01cm⁻²@18 J/cm² and < 0.4cm⁻²@25 J/cm²

Optical parts used at λ =351nm (3 ω)

- **Transmittance per side** > 99.8%
- Imperfections < 10×0.25
- Laser damage density at 3ns < 0.01cm⁻²@14 J/cm²

Specific parts with differents coatings on each side

- **SHG** \Rightarrow input side : R<0.5% at λ =1053nm \Rightarrow output side : R<2.3% at λ =1053nm and R<0.6% at λ =526nm
- THG ⇒ intput side : R<0.5% at λ=526nm
 ⇒ output side : R<0.7% at λ=351nm

Sol-gel coatings made from a colloidal silica solution

Sol-gel coatings made from organic polymer solution

100

lo o

TWO SOL-GEL COATINGS METHODS

- ☺ Two coated large sides simultaneously
- Parts shapes : flat, convex, concave...
- ☺ Easy parts loading
- ⊖ Not appropriate for one coated side or differents coatings on each side
- A large quantity of coating solution is required

The sol-gel technology has been developped by CEA and then transferred to a company .

A specific production facility and coating equipments have been designed by CEA.

thickness = $C \times (speed)^n$ $n \sim 2/3$

0

00

Dip-coating

- Appropriate for one coated large side or differents coatings on each large side
- ☺ A small volume of solution is required
- Parts shape : flat only
- ☺ The parts loading required specific adjustements

Meniscus-coating

| PAGE 9 CEA | 12th APRIL 2017

PRODUCTION FLOW AND PERFORMANCES

SOL-GEL PRODUCTION FACILITY

PRODUCTION FLOW AND PERFORMANCES

PAGE 15

ISO 6 COATING AREA

DIP COATING MACHINE

DIP COATING MACHINE

MENISCUS COATING MACHINE

MENISCUS COATING MACHINE

CEA | 12th APRIL 2017 | PAGE 21

CHEMICAL HARDENING

CHEMICAL HARDENING

CEA | 12th APRIL 2017 | PAGE 23

U

SPECTRAL MEASUREMENTS

U

TRANSMITTANCE PERFORMANCES

CEA | 12th APRIL 2017 | PAGE 33

CEA | 12th APRIL 2017 | PAGE 34

COATING REMOVAL

Before chemical hardening

After chemical hardening

LASER INDUCED DAMAGE THRESHOLD

LIDT checked by sampling on representative small parts

AR3ω : Raster scan method on large surface (CEA bench) **C** damage density

AR1ω : Raster scan method on 1cm² surface **C** damage threshold

Coating types	AR1ω dip coating	AR1ω dip coating	AR1ω meniscus coating
	+ hardening	w/o hardening	+ hardening
Damage thresholds (J/cm²)	50	50	40

PRODUCTION RATE

PRODUCTION RATE (2016)

- Quantity of coated parts except DDS : 339 <a>> mean ~8 parts/week and max ~16 parts/week
- Quantity of coated DDS : 96 ~16 DDS/week
- Total quantity : 435 in 2016
- **Total expected quantity in 2017 : ~575 including 172 DDS**

YIELD – 2016 (EXCEPT DDS)

345 polished parts have started the coating process

6 parts have been stopped before the coating stage because of different problems
 Cleaning dysfunctions, handling issues ...

\$ 339 parts have been coated

Only 2 unusable parts after coating

The yield of compliant parts beginning the coating process is better than 97%
the coating process is efficient for such large optical parts

The yield of compliant parts after coating is better than 99% (only 2/339 have been rejected)
the coating stage is high-yield because it is well controlled

Such yields are essential because the coating stage is less than 10% of the total cost of a finished part.

CEA | 12th AVRIL 2017 | PAGE 40

CONCLUSIONS AND PROSPECTS

CONCLUSIONS AND PROSPECTS

- The sol-gel technology has been transferred successfully from CEA to industry
- Today the production facility, the equipments and the know-how allow to reach a high-yield production in compliance with LMJ requirements
- The production rate could be increased by adding other equipments (dip-coater, cleaning machine...)

Thank you

for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 XX XX XX XX | F. +33 (0)1 XX XX XX XX

Direction Département Service

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019