DE LA RECHERCHE A LINDUSTRIE

Overview of the sol-gel antireflective coatings performances and production rate for CEA high power laser facilities

SYMPOSIUM ON OCLA 2017| Eric Lavastre
$12^{\text {th }}$ APRIL 2017

CONTEXT

HIGH POWER LASER

 FACILITIES AT CEA-CESTA
CEA-CESTA : LOCATION AND ACTIVITIES

- Activities
- Management of physics experiments in large facilities such as facilities of thermomechanical tests, anechoic chambers, X-ray generators...
- Operating of high power lasers facilities (LMJ and PETAL)
- Hubs of competitiveness
- Route des Lasers (lasers and photonics)
- Aerospace Valley

LABORATORY OF OPTICAL TECHNOLOGIES (LTO)

Missions

■ Specification of optical components \Rightarrow to divide in elementary fabrication stages

- Fabrication follow-up of optical components
- Optical logistics : transit, import/export, storage management (location, quantity, performances preservation during the storage...)
- To Lead the R\&D of optical processes

On behalf of

- High power lasers facilities at CEA: (LIL), LMJ, PETAL
- Other CEA labs
- Technical and Scientific studies or valorization

LTO team

- 14 permanent people and ~ 10 students
- People are skilled according to elementary optical fabrication stages

SOL-GEL COATINGS

ANTIREFLECTIVE COATINGS FOR THE LMJ FACILITY

MAIN ANTIREFLECTIVE COATINGS SPECIFICATIONS

Optical parts used at $\lambda=1053 \mathrm{~nm}(1 \omega)$

- Transmittance per side > 99.8\%
- Imperfections (ISO10110-7) < $20 \times 0.3 / 25 \times 0.275 / 30 \times 0.25$ according to the parts

■ Laser damage densities at $3 \mathrm{~ns}<0.01 \mathrm{~cm}^{-2} @ 18 \mathrm{~J} / \mathrm{cm}^{2}$ and $<0.4 \mathrm{~cm}^{-2} @ 25 \mathrm{~J} / \mathrm{cm}^{2}$

Imperfections

Optical parts used at $\lambda=351 \mathrm{~nm}(3 \omega)$

- Transmittance per side > 99.8\%
- Imperfections < 10×0.25
- Laser damage density at $3 \mathrm{~ns}<0.01 \mathrm{~cm}^{-2} @ 14 \mathrm{~J} / \mathrm{cm}^{2}$
Number

of defects | Side dimension (mm) of |
| :---: |
| an equivalent square in |
| terms of surface |

Specific parts with differents coatings on each side

- Phase plate \Rightarrow imprinted side : $T>99.8 \%$ at $\lambda=1053 \mathrm{~nm}$ and $\lambda=351 \mathrm{~nm}$
\Rightarrow « alignment » side : 99.2\% < T1 ω < 99.6\% and R3 $\omega>3 \%$
- SHG \Rightarrow input side : $\mathrm{R}<0.5 \%$ at $\lambda=1053 \mathrm{~nm}$
\Rightarrow output side : $R<2.3 \%$ at $\lambda=1053 \mathrm{~nm}$ and $R<0.6 \%$ at $\lambda=526 \mathrm{~nm}$
- THG \Rightarrow intput side : $R<0.5 \%$ at $\lambda=526 \mathrm{~nm}$
\Rightarrow output side : $R<0.7 \%$ at $\lambda=351 \mathrm{~nm}$

TWO TYPES OF COATINGS FROM A LIQUID PROCESS

Sol-gel coatings made from a colloidal silica solution

Sol-gel coatings made from organic polymer solution

TWO SOL-GEL COATINGS METHODS

Dip-coating
(;) Two coated large sides simultaneously
() Parts shapes : flat, convex, concave...
(;) Easy parts loading
() Not appropriate for one coated side or differents coatings on each side
:) A large quantity of coating solution is required
The sol-gel technology has been developped by CEA and then transferred to a company .
A specific production facility and coating equipments have been designed by CEA.
thickness $=\mathbf{C} \times(\text { speed })^{n} \quad n \sim 2 / 3$
() Appropriate for one coated large side or differents coatings on each large side
() A small volume of solution is required
-) Parts shape : flat only
© The parts loading required specific adjustements

Meniscus-coating

PAGE 9

PRODUCTION FLOW

 ANDPERFORMANCES

SOL-GEL PRODUCTION FACILITY

CEA \| $12^{\text {th }}$ APRIL 2017 | PAGE 11

PRODUCTION FLOW AND PERFORMANCES

cea
 DIP COATING MACHINE

Cea dip coating machine

CeZ MENISCUS COATING MACHINE

Cea spectral measurements

TRANSMITTANCE PERFORMANCES

TRANSMITTANCE PERFORMANCES

TRANSMITTANCE PERFORMANCES

TRANSMITTANCE PERFORMANCES

$1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$ 2700K illuminant

CEA \| $12^{\text {th }}$ APRIL $2017 \mid$ PAGE 32

1rst step: to detect and record the defects location on each coated side

2nd step: to measure the defects detected beforehand

A unit equipped with a second camera and a LED spot is moved at flagged sub-apertures

After focusing a photo is taken and the defect's size
is automatically calculated

FINAL INSPECTION

Before chemical hardening

After chemical hardening

LASER INDUCED DAMAGE THRESHOLD

LIDT checked by sampling on representative small parts

- AR3 ω : Raster scan method on large surface (CEA bench) \supset damage density

- AR1 ω : Raster scan method on $1 \mathrm{~cm}^{2}$ surface $\boldsymbol{\rho}$ damage threshold

Coating types	AR1 ω dip coating + hardening	AR1 ω dip coating w/o hardening	AR1 ω meniscus coating + hardening
Damage thresholds $\left(\mathbf{J} / \mathbf{c m}^{2}\right)$	50	50	40

PRODUCTION RATE

PRODUCTION RATE (2016)

■ Quantity of coated parts except DDS : 339 ว mean ~8 parts/week and max ~16 parts/week
■ Quantity of coated DDS : 96 $\boldsymbol{\rho}$ ~16 DDS/week

- Total quantity : 435 in 2016

■ Total expected quantity in 2017 : ~575 including 172 DDS

YIELD - 2016 (EXCEPT DDS)

- 345 polished parts have started the coating process
$\left.{ }^{4}\right) 6$ parts have been stopped before the coating stage because of different problems〇 cleaning dysfunctions, handling issues ...

ヶ 339 parts have been coated
© only 2 unusable parts after coating

- The yield of compliant parts beginning the coating process is better than 97\%
$\stackrel{y}{4}$ the coating process is efficient for such large optical parts
- The yield of compliant parts after coating is better than 99% (only $2 / 339$ have been rejected) \leftrightarrow the coating stage is high-yield because it is well controlled

Such yields are essential because the coating stage is less than 10% of the total cost of a finished part.

CONCLUSIONS AND
 PROSPECTS

CONCLUSIONS AND PROSPECTS

- The sol-gel technology has been transferred successfully from CEA to industry
- Today the production facility, the equipments and the know-how allow to reach a high-yield production in compliance with LMJ requirements
- The production rate could be increased by adding other equipments (dip-coater, cleaning machine...)

Thank you

for your attention

