

PVD coating materials for laser coatings

OCLA / Rhysearch Buchs CH 12.04.2017 Dr.-Ing. M. Stolze, Umicore Thin Film Products AG Balzers, Liechtenstein

Agenda

Laser coating applications

Laser coating design types and material functions

Limiting mechanisms in laser coatings

Impact of coating material & coating process

Typical & tailored laser coating materials

Agenda

Laser coating applications

Laser coating design types and material functions

Limiting mechanisms in laser coatings

Impact of coating material & coating process

Typical & tailored laser coating materials

Laser coating applications

Biggest application segments 2014 w/ annual growth rate 2015-19

Communications	+ 6.0 %
 kW & micro materials processing & marking 	+ 3.5-6.0%
 Photolithography 	+ 8.5 %
 Lifescience & Medical 	+ 9.0 %
 Sensors & Instrumentation 	+ 6.5 %
 Optical data storage 	- 30.0 %
 Displays & Light shows 	+28.0 %
 Defense / Security 	+ 5.1 %
 Energy Conversion 	n.a.

The worldwide market for lasers, Market Review and Forecast 2015 Nogee, Pennwell, Strategies Unlimited, 2015

Laser coating applications

Biggest application segments 2014 w/ annual growth rate 2015-19

Communications	+ 6.0 %
 kW & micro materials processing & marking 	+ 3.5-6.0%
Photolithography	+ 8.5 %
Lifescience & Medical	+ 9.0 %
 Sensors & Instrumentation 	+ 6.5 %
 Optical data storage 	- 30.0 %
 Displays & Light shows 	+28.0 %
Defense / Security	+ 5.1 %
Energy Conversion	n.a.

Market segments w/ typically high requirements for total optical loss AND / OR laser damage

Agenda

Laser coating applications

Laser coating design types and material functions

Limiting mechanisms in laser coatings

Impact of coating material & coating process

Typical & tailored laser coating materials

Laser coating design types and material functions

Examples for coating stack design types for optical laser components

- Mirrors (HR Coatings)
- Output Couplers / Beam Splitters (PR Coatings)
- Polarizing Beam splitters
- AR coatings
- Retardation Plates (Waveplates)
- Protective windows
- Beam-shaping mirrors (Gaussian, Parabolic)
- Filters (edge, pass, wide band, narrow band, ...)

...

7

Laser coating design types and material functions

Examples for material functions in laser coating stacks

- H, M, L-index function for dielectric coatings
- Adhesion promotion
- Protection of brittle or reactive layers
- Prevention of interdiffusion
- Mechanical stress compensation
- Metallic high reflectance w/ high thermal conductivity
- •

...

Agenda

Laser coating applications

Laser coating design types and material functions

Limiting mechanisms in laser coatings

Impact of coating material & coating process

Typical & tailored laser coating materials

- Light scatter losses
- Absorption losses
- Laser damage

Light scatter losses in coatings

- surface and interface roughness
- phase or crystal grain boundaries
- irregularities (defects, voids, ...)

Absorption losses in coatings

- intrinsic absorption of material
- extrinsic absorption:
 - substoichiometry
 - impurities
 - defects

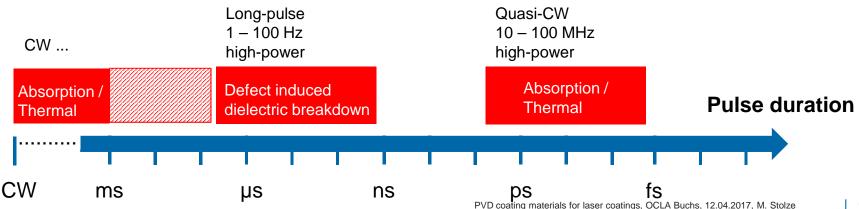
Primary absorption can be amplified by scattering (light trapping)

Laser-induced damage in coatings

- Due to absorption
- Caused by defects / inhomogeneities
- Based on electronic excitation

Laser-induced damage in coatings

Limitation to dielectric coatings



Laser-induced damage for dielectric coatings

Relevance of laser operation regimes:

Pulse durationPulse repetition rates• CWPulse power / intensity• Short pulseWavelength (range)

Selected laser damaging types by operation regimes (schematic):

Laser-induced damage for dielectric coatings

Mechanism for «Absorption / thermal» type of laser damage:

- Excitation of electrons from valence band into the conduction band
- Further excitation of conduction band electrons
- Heating of material by electron-phonon collisions
- Structural changes, film delamination, film cracking, melting

Material impact

- Optical bandgap
- Mechanical properties
- Melting point
- Thermal conductivity

Laser-induced damage for dielectric coatings

Mechanism for «Dielectric breakdown» type of laser damage:

- Local absorption at any irregularities
 - intrinsic / extrinsic absorption centers
 - particles
 - vacancies, pores, voids, cracks, film interface roughness, phase and crystal grain boundaries
- Due to bad thermal conductivity / short interaction time local heat up
- Plasma formation → breakdown
- Melting, eruptive ejection of defects, film stress induced cracking / delamination

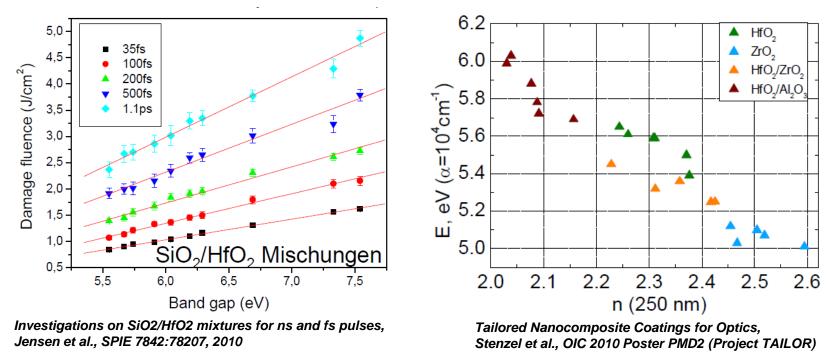
Material impact

• Stoichiometry, purity, density, microstructure, mechanical properties, melting point, thermal conductivity, miscibility, recrystallization temperature, ...

Agenda

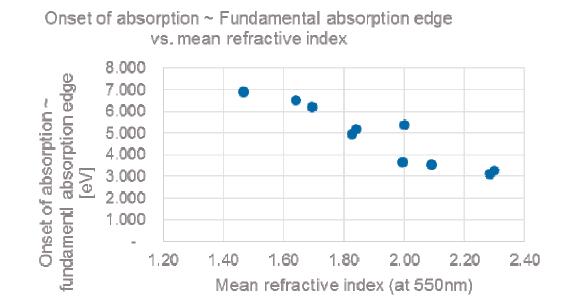
Laser coating applications

Laser coating design types and material functions


Limiting mechanisms in laser coatings

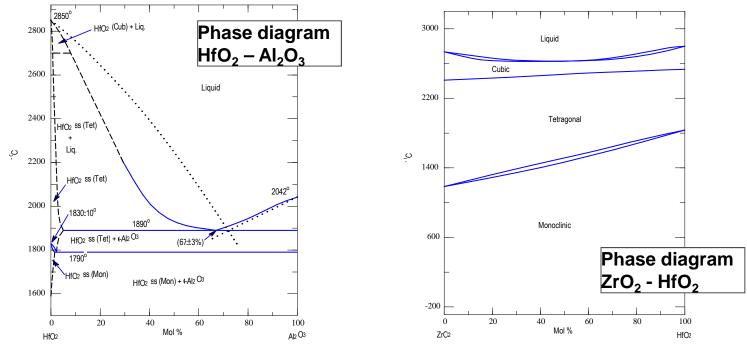
Impact of coating material & coating process

Typical & tailored laser coating materials


• For absorptive / thermal damage type LIDT for dielectric materials increasing with increasing optical bandgap, i.e. decreasing refractive index

→ search materal w/ highest opt. bandgap E₀ w/ still reasonable refractive index n for intended interference coating stack
PVD coating materials for laser coatings, OCLA Buchs, 12.04.2017, M. Stolze

• LIDT increasing with increasing optical bandgap, i.e. decreasing index



Umicore Thin Film Products, Consumables for PVD applications, Evaporation materials, Oxides

 \rightarrow search materal w/ highest opt. bandgap E₀ w/ still reasonable refractive index n for intended interference coating stack

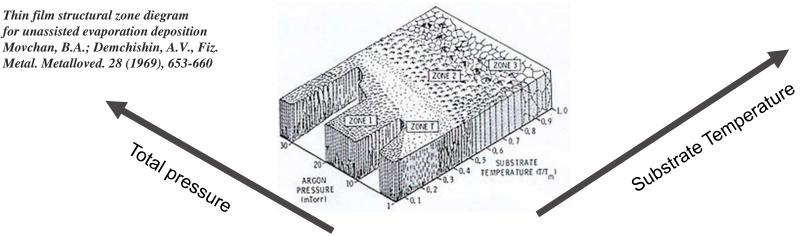
• Mixtures w/ better compromise between opt. bandgap and refractive index

- \rightarrow thermodynamical limitations as evaporation material
- → full miscibility (example right) only for a few mixtures, miscibility gap and potentially different vapour pressures for same T lead to composite layers and uncontrollable inhomogeneity
- \rightarrow full miscible Hf-Zr-oxide \rightarrow additionally better homogeneity than HfO₂

- Mixtures w/ better compromise between opt. bandgap and refractive index
 - → co-evaporation from pure components difficult to control and not feasible in most production coater configurations
 - Hf-Al-oxide from HfO_2 and Al_2O_3 in TAILOR project by Fraunhofer IOF Jena
 - \rightarrow sputtering from mixed targets possible
 - Hf-Si-oxide by Laserzentrum Hannover
 - Hf-Al-oxide

- LIDT ~ Opt. bandgap: larger for amorphous vs. crystalline state
- Scatter losses: smaller for amorphous vs. nano / micro-crystalline state
 - $\rightarrow\,$ combination of starting material & deposition process needs to lead to amorphous, low absorbing, dense films
 - for Magnetron Sputtering (MS) of suboxide target for deposition of fully oxidized layer:

by optimal choice of O_2 reactive gas pressure, substrate temperature and deposition rate


- for Ion Beam sputtering (IBS) of HfO₂:
 use optimal composition of the starting material: Hf metal
- for Plasma/ion assisted evaporation of oxides balancing effect from substrate temperature and plasma / ion assistance
- for Conventional evaporation process →

... cont'd: prevention of crystallization

Conventional evaporation of many dielectrics (oxides, fluorides):

- general: stay below critical substrate temperature \rightarrow avoid zone 3 \rightarrow prevent recrystallization
- oxides:
 - → selection of optimal starting material composition + reactive pressure + temperature
 - → balancing coating material oxygen content and reactive pressure (increased reactive pressure suppresses recrystallization)

Overview material & process selection options: example HfO₂ film

HfO ₂ , HfO _{2-x} sintered Granules, tablets, discs HfO _{2-x} molten Slug, premelt Gran Shav	ules Discs	Hf metal Targets	HfO sintered Targets	HfO ₂ sintered Targets	Hf metal Targets	HfO ₂ sintered Targets
E-beam		DC,MF	MF	RF		
		M	lagnetron			IBS
Evaporation			S	puttering		

Overview material & process selection options: example HfO₂ film

Evaporation: Conventional & IAD

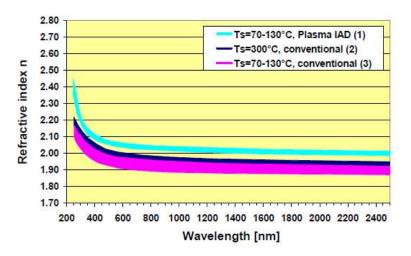


Figure 1: Ranges of the refractive index as a function of wavelength obtained for conventional deposition and for plasma-ion-assisted deposition (plasma IAD).

Evaporation conditions

- Region (1) SyrusPro with HPE6 e-gun, Mo-liner, Advanced Plasma Source (APS), 02 flow 30 sccm, Ar auxiliary gas inlet, BIAS voltage 120 V, deposition rate 0.5 nm/s.
- Regions (2) and (3) BAK640 coater with ESQ110 e-gun, Mo-liner, O2 pressure 0.8-8.0×10⁻⁴ mbar, deposition rate 0.2-0.5 nm/s.

PVD coating materials for laser coatings, OCLA Buchs, 12.04.2017, M. Stolze

Chemical formula	HfO _{2-x} with small amounts of ZrO _{2-x}			
Color	Black metallic, grey, or white (depending on oxygen deficiency)			
Density	9.7 g/cm ³			
Melting point	2812 °C			
Delivery form	Granulate, tablets			

Recommended Process Parameters

Table 3. Tachairal data of starting material

Table 3: Conventional deposition

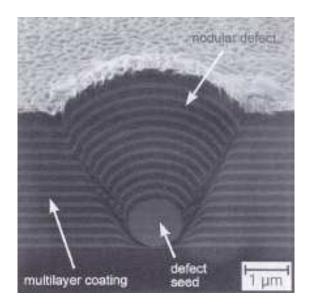
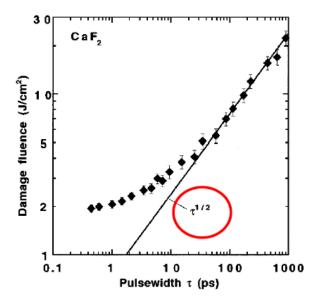

Method	E-beam evaporation
Crucible	Mo-liner, preferably rotating
Substrate temperature	Preferably high (≥ 300 °C)
Rate	0.2-0.5 nm/s
O ₂ pressure	0.8-6.0×10 ⁻⁴ mbar, to be adjusted depending on the deposition rate

Table 4: Plasma ion assisted deposition (plasma IAD) in a Leybold Optics SyrusPro or 1104 coater with APS source

Method	E-beam evaporation with plasma IAD using APS
Crucible	Cu-crucible/Mo-liner, preferably permanently rotating
Substrate temperature	No substrate heating required
Rate	\leq 0.5 nm/s (limited by allowed O ₂ flow)
O ₂ flow	< 30 sccm, to be adjusted depending on the deposition rate
Auxiliary Ar flows	
Ar 1	typically 3–5 sccm
Ar 2	typically 8–12 sccm
Control	BIAS, via coil current
BIAS	120 V, for very low light scattering up to 160 V



• LIDT dependence on defects & other irregularities

Primary defect («seed») impacting layer stack growth TiO2/ SiO2 → nodules

Tench et al. SPIE 2114, 1993

Primary defect («seed») impacting layer stack growth \rightarrow nodules

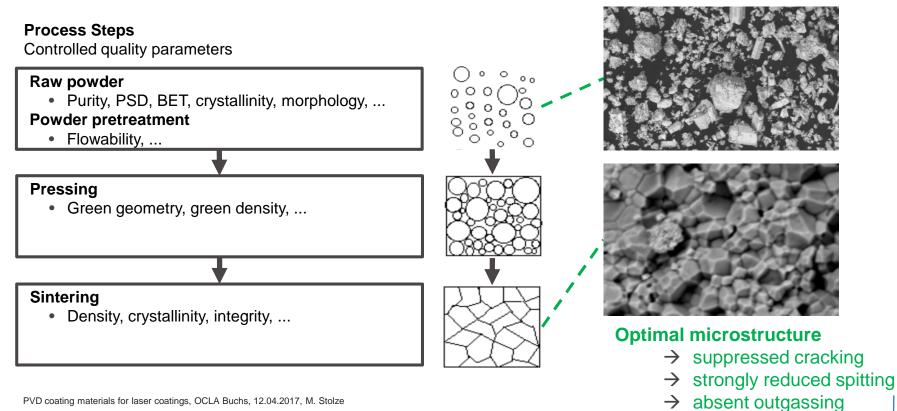
Stuart et al. Phys. Rev. B, 2224, 1996

Laser damage

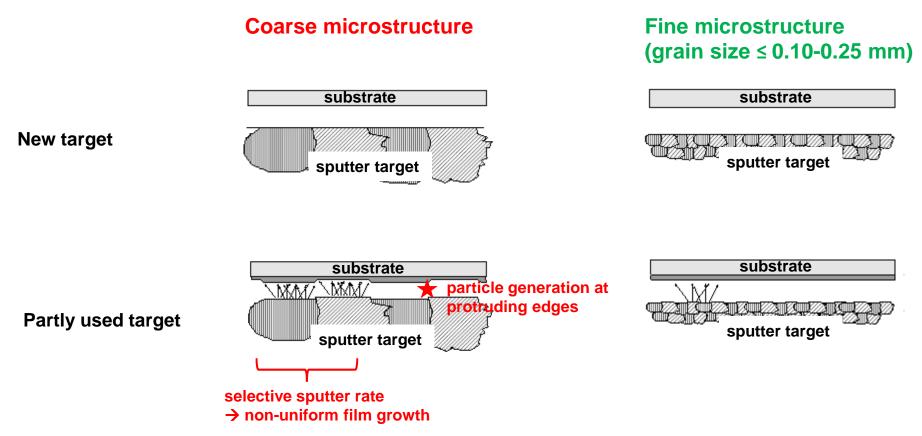
Impact of coating material & coating process

Prevention of defects and other irregularities: Evaporation

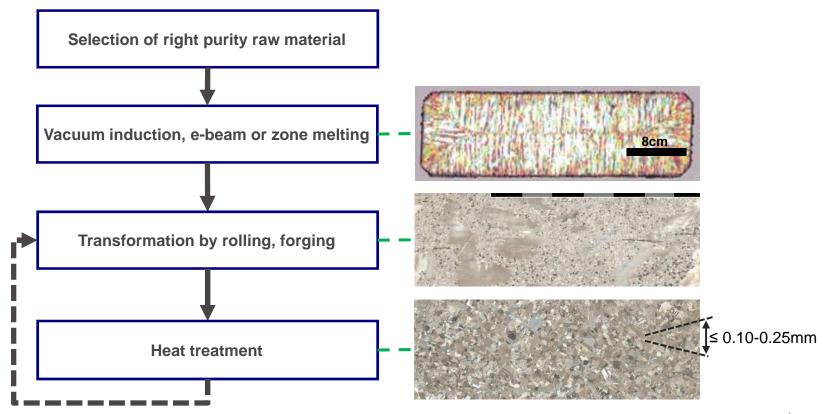
<section-header><figure><figure><complex-block>


PVD coating materials for laser coatings, OCLA Buchs, 12.04.2017, M. Stolze

Laser damage for HfO₂ single layer at implanted defects 1064nm, 8ns, 10 Hz, S-on-1, beam spot ~ 250 μ m | ²⁸


Prevention of defects and other irregularities: Evaporation

Adjustment of microstructure during production of sintered evaporation material


Prevention of defects and other irregularities: Sputtering

30

Prevention of defects and other irregularities: Sputtering
 Adjustment of microstructure during production of metal sputter targets

Agenda

Laser coating applications

Laser coating design types and material functions

Limiting mechanisms in laser coatings

Impact of coating material & coating process

Typical & tailored laser coating materials

Typical & tailored laser coating materials

 Overview of typical thin film coating materials for laser coatings, applicable by PVD

	Spectral range						
	EUV	DUV	NUV	VIS	NIR	MWIR	LWIR
Typical PVD coating technology	MS	EVAP	EVAP,MS,IBS	EVAP,MS,IBS	EVAP,MS,IBS	EVAP,(MS)	EVAP
Typical PVD film materials							
Metals, Elemental	Ru, Si	Al, Mg	Au,Ag,Al	Au,Ag,Al	Au,Ag,Al	Au,Ag,Al	Au,Ag,Al
Oxides		SiO2, Al2O3	SiO2, Al2O3, HfO2, ZrO2,	SiO2, Al2O3, HfO2, ZrO2,	SiO2, Al2O3, HfO2, ZrO2,	,,,,,	Y2O3, MgO, Sc2O3
			Ta2O5, TiO2	Ta2O5, TiO2	Ta2O5, TiO2	Al2O3, HfO2, Ta2O5, TiO2)	
Fluorides		LaF3,MgF2, GdF3,NdF3	YF3,MgF2	YF3,MgF2	YF3,MgF2	ThF3, DyF3, YbF3, YF3, Mixtures	ThF3, DyF3, YbF3, YF3, Mixtures
Chalcogenides				(ZnS, ZnSe)	(ZnS, ZnSe)	ZnS, ZnSe	ZnS, ZnSe
Other	MoSi2, BN						

Typical & tailored laser coating materials

- Requirements for tailored laser coating materials formulations
 - Lowest possible UV absorption edge (material selection & purity)
 - Capable of low-defect deposition (no spitting, no arcing, no nodal growth) and reduced outgassing
 - Pure or mixed w/o miscibility gap (evaporation w/o composite films)
 - Congruent or controlled incongruent evaporation
 - Intrinsic low film stress (mixtures, oxidation state)
 - Suppressed recrystallization for growing film
 - Capable of microscopically uniform deposition / low roughness

Typical & tailored laser coating materials

Tailored laser coating materials formulations Umicore

Evaporation materials:

•

- NUV VIS NIR: Lasergrade oxides: HfO_2 , Sc_2O_3 , Ta_2O_5 , Al_2O_3 , SiO_2 , ... Hf-Zr-ox, HfO_2 :Al, Ta-Al-ox Lasergrade metals: Hf, Al, Si, ...
- LWIR: High-pure fluorides: DyF₃, YbF₃, YF₃, IRF-625, IRF-900, ...
- General: High-pure metals: Au, Rh, AgCu, Al, ...

Sputtering materials:

- NUV VIS NIR: Lasergrade metals: Hf, Al, Si, ...
- General: High-pure metals: Au, Rh, AgCu, Al, Ta, Nb, ...

Thank you for your attention !

For further questions & interest please visit our booth or contact us:

Umicore Thin Film Products Balzers / Liechtenstein

Markus Stolze: Erich Schraner: markus.stolze@umicore.com erich.schraner@umicore.com

