Aktuelles

RhySearch fördert Innovation durch Vernetzung und Wissenstransfer zwischen regionalen Hightech-Unternehmen und Forschungsinstitutionen – auch für Hilti.

Dr. Andreas Bong,
Head Corporate Research & Technology Hilti AG

Design of Time-Encoded Spiking Neural Networks in 7-nm CMOS Technology

S.Widmer1,3, M. Kossel1, G. Cherubini1, S. Woźniak1, P. Francese1, A.Stanojevic1, M.Brändli1, K.Frick2, A.Pantazi1

Published: 18.May 2023, IEEE DOI: doi.org/10.1109/TCSII.2023.3277784

In biologically inspired spiking neural networks (SNNs) neurons communicate by short pulses, called spikes. SNNs have the potential to be more power efficient than artificial neural networks (ANNs), thanks to the fewer computational steps required by the spike transmission and processing, as compared to the multiply-and-accumulate (MAC) operations with wide bit-vectors usually adopted in ANNs. We present the design of two types of SNNs with integrate-and-fire dynamics and single-spike per neuron operation, where neural communication is based on synchronous time-to-first-spike (sTTFS) and time-to-first-spike (TTFS) encoding schemes. In the considered time-encoded SNNs, the information is carried by the timing of the spikes with respect to a reference time. In 7nm CMOS technology both designs are synthesized as VHDL-based random-logic-macros (RLMs) and compared to an equivalent ANN design in terms of power consumption, latency and silicon area, using the Iris data set for inference. A cost function expressed as a product of energy consumption and silicon area is introduced to compare the three network designs. With respect to this cost function, it turns out that the SNN-TTFS implemented for the considered classification task outperforms the ANN used as baseline model.

1IBM Research GmbH, Rüschlikon, Switzerland
2ICE Institut für Computional Engineering, OST-Eastern Switzerland University of Applied Sciences, St. Gallen, Switzerland
3RhySearch, Buchs, Switzerland

Download Publication

 

 

Unsere Website verwendet Cookies, damit wir die Page fortlaufend verbessern und Ihnen ein optimiertes Besucher-Erlebnis ermöglichen können. Wenn Sie auf dieser Webseite weiterlesen, erklären Sie sich mit der Verwendung von Cookies einverstanden.
Weitere Informationen zu Cookies finden Sie in unserer Datenschutzerklärung.
Wenn Sie das Setzen von Cookies z.B. durch Google Analytics unterbinden möchten, können Sie dies mithilfe dieses Browser Add-Ons einrichten.