Qualification of space laser optics for ESA LIDAR missions

Wolfgang Riede, Helmut Schröder, Paul Allenspacher
Institute of Technical Physics, DLR Stuttgart

OCLA 2017 (Buchs SG)
12.04.2017
German Aerospace Center (DLR)

Approx. 8000 employees across 33 institutes and facilities at 20 sites.

German Aerospace Center (DLR)

Approx. 8000 employees across 33 institutes and facilities at 20 sites.

Institute of Technical Physics

Director: Prof. Dr. Thomas Dekorsy

Topics:
Laser systems for applications in:
Aeronautics / Space / Security / Defense

Staff:
3 departments
70 employees
Our motivation: Upcoming ESA LIDAR space missions

Atmospheric Dynamics Mission (ADM) Aeolus

Global measurement of wind profiles
- Sun-synchronous orbit with 7 days repeat cycle
- Launch period: 11/2017 – 01/2018 soon!
- Projected lifetime: 3 years
- Laser: ALADIN (Atmospheric Laser Doppler Instrument)
- Specs: 50 Hz, $\sim < 120 \text{ mJ} @ 355 \text{ nm}$, 20 ns
- Partial pressure oxygen: $\sim 40 \text{ Pa}$

EarthCARE

Global profiling of aerosols
- Expected launch in Q4/2018
- Design lifetime: 3 years
- Laser: ATLID (Atmospheric LIDAR)
- Specs: 51 Hz, $>35 \text{ mJ} @ 355 \text{ nm}$
- Pressurized (artificial air)
Challenges for laser components / sub-modules in space

Specific mission requirements (ESA ADM Aeolus)

- 3 years of operation in orbit -> ~ 4.7 billion laser pulses -> long term stability of laser components
- High pulse energy (up to 120 mJ, 20 ns) in the UV (355 nm) -> high damage threshold of components

Space environmental effects (impacting the performance of space optics)
Challenges for laser components / sub-modules in space

Specific mission requirements (ESA ADM Aeolus)

- 3 years of operation in orbit -> ~ 4.7 billion laser pulses -> long term stability of laser components
- High pulse energy (up to 120 mJ, 20 ns) in the UV (355 nm) -> high damage threshold of components

Space environmental effects (impacting the performance of space optics)

Need for on-ground test setups and test procedures for simulation of space environment

No service visit possible ;-}
Test bench for LIDT evaluation under high vacuum

- 1-on-1 / S-on-1 tests according to ISO 21254
- Testing under high vacuum (10^{-6} mbar) or artificial atmosphere
- Fundamental mode laser (Gaussian beam profile on sample) $M^2 \sim 1.5$
- Nd:YAG wavelength and harmonics: 1064, 532, 355, 266 nm
- Damage detection by scatter probing and pressure sensing (threshold $\sim \mu$m size)
LIDT setup (IR beam line)

Sample environment

High vacuum 10^{-6} mbar
Artificial atmosphere (<=5 bar)

High vacuum stainless steel chamber
LIDT setup (UV beam line)

Sample environment

High vacuum 10⁻⁶ mbar
Artificial atmosphere (<5 bar)

High vacuum stainless steel chamber
Large database of space laser optics: Vendor / batch screening

![Characteristic damage curve 9570327_13Air](image)

<table>
<thead>
<tr>
<th>Optic</th>
<th>Coating</th>
<th>Wavelength [nm]</th>
<th>Fluence* F_{10000} [J/cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>waveplate</td>
<td>AR</td>
<td>1064</td>
<td>12.4</td>
</tr>
<tr>
<td>reflector</td>
<td>HR0</td>
<td>1064</td>
<td>21.7</td>
</tr>
<tr>
<td>polarizer</td>
<td></td>
<td>1064</td>
<td>27</td>
</tr>
<tr>
<td>folding mirror</td>
<td>HR45</td>
<td>1064</td>
<td>19.5</td>
</tr>
<tr>
<td>window</td>
<td>AR</td>
<td>1064</td>
<td>23.5</td>
</tr>
<tr>
<td>waveplate</td>
<td>AR</td>
<td>355</td>
<td>4.4</td>
</tr>
<tr>
<td>polarizer</td>
<td></td>
<td>355</td>
<td>5.1</td>
</tr>
<tr>
<td>folding mirror</td>
<td>HR45</td>
<td>355</td>
<td>11.1</td>
</tr>
<tr>
<td>window</td>
<td>AR</td>
<td>355</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Best LIDT values of optical components exposed to 1064 / 355 nm pulses

- 350 space laser optics tested
- 10 years of test campaign
- 20 different types
- 355, 532 and 1064 nm

40% IR, 10% VIS, 50% UV
10 European / 6 US vendors
Large database of space laser optics: Vendor / batch screening

All critical laser optics for ESA ALADIN were tested in our facilities!

<table>
<thead>
<tr>
<th>Optic</th>
<th>Coating</th>
<th>Wavelength [nm]</th>
<th>Fluence* F_{10000} [J/cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>waveplate</td>
<td>AR</td>
<td>1064</td>
<td>12.4</td>
</tr>
<tr>
<td>reflector</td>
<td>HR0</td>
<td>1064</td>
<td>21.7</td>
</tr>
<tr>
<td>polarizer</td>
<td></td>
<td>1064</td>
<td>27</td>
</tr>
<tr>
<td>folding mirror</td>
<td>HR45</td>
<td>1064</td>
<td>19.5</td>
</tr>
<tr>
<td>window</td>
<td>AR</td>
<td>1064</td>
<td>23.5</td>
</tr>
<tr>
<td>waveplate</td>
<td>AR</td>
<td>355</td>
<td>4.4</td>
</tr>
<tr>
<td>polarizer</td>
<td></td>
<td>355</td>
<td>5.1</td>
</tr>
<tr>
<td>folding mirror</td>
<td>HR45</td>
<td>355</td>
<td>11.1</td>
</tr>
<tr>
<td>window</td>
<td>AR</td>
<td>355</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Best LIDT values of optical components exposed to 1064 / 355 nm pulses
Raster scans – supplemental test for flight modules

Interrogation of large test areas (up to 100 mm2)

Optical micrographs of AR 355 coating (with activated damage sites)
Setup for laser-induced contamination tests

- Stainless-steel UHV chamber
- 4 parallel beam lines allow for simultaneous sample testing (identical conditions)
- Non-depletable contamination source
- Long distance microscope
- Online fluorescence / transmission monitoring
LIC scheme: Deposit formation on the surface of optics

Hydrocarbons used for lab tests (purity, handling)

Space qualified glues, adhesives...

Toluene \hspace{1cm} Naphthalene \hspace{1cm} Anthracene

and CV 2566, Solithane, A12 Epoxy ………
Laser-induced fluorescence detection of deposits

Correlation between deposit thickness and fluorescence intensity

Test parameters*:
- Temperature: 100°C
- Contaminant: A12 epoxy
- Pressure: HV
- Wavelength: 355 nm

Fluorescence detection limit: few nanometers
Contamination induced damage: in-situ microscopy

High reflector 45°@ 355 nm
Naphthalene molecular contamination
3x10^{-5} mbar

Peak fluence: 0.4 J/cm²
Repetition rate: 1000 Hz

10h, R=98%
16h, R=88%
20h, R=56%
29h, R=15%

36 x 10^6 pulses
Contamination induced damage: in-situ microscopy

High reflector 45°@ 355 nm
Naphthalene molecular contamination
3x10^{-5} mbar

Peak fluence: 0.4 J/cm²
Repetition rate: 1000 Hz

Very small threshold fluence for damage under presence of molecular contamination
Contamination induced damage: Mitigation by oxygen

- Threshold behavior of oxygen pressure ratio
- Cleaning of contaminated surface by UV irradiation in O₂ atmosphere

Test conditions:

- Wavelength: 355 nm
- Fluence: 1.0 J/cm²
- Pulse number: 3.6 Mio shots
- Pulse repetition rate: 1 kHz
- Optical samples: fused silica, AR @355nm
- Naphthalene partial pressure fixed: 10⁻⁵ mbar
- O₂ pressure variable: 10⁻⁶ – 4 10⁻² mbar
Contamination induced damage: mitigation by oxygen

- Threshold behavior of oxygen pressure ratio
- Cleaning of contaminated surface by UV irradiation in O₂ atmosphere

Test conditions:
- Wavelength: 355 nm
- Fluence: 1.0 J/cm²
- Pulse number: 3.6 Mio shots
- Pulse repetition rate: 1 kHz
- Optical samples: fused silica, AR @355nm
- Naphthalene partial pressure fixed: 10⁻⁵ mbar
- O₂ pressure variable: 10⁻⁶ – 4 10⁻² mbar

Small partial pressures of oxygen suppresses contamination effects
Proton radiation tests of nonlinear crystals

Proton irradiation facility PIF @ PSI, CH

Test philosophy:
3 year equivalent orbital dose of p^+
(applied in 1 hour)
Dose: $< 10^{12} \text{ p}^+/\text{cm}^2$
Flux: $< 5 \times 10^8 \text{ p}^+/(\text{cm}^2 \text{ s})$
Irradiation in air
p^+ radiation tests at 10 MeV

Proscan high energy facility @ PSI, CH

Test philosophy:
3 year equivalent orbital dose of p^+
(applied in 1 hour)
Dose: $< 10^{12} \text{ p}^+/\text{cm}^2$
Flux: $< 2 \times 10^8 \text{ p}^+/(\text{cm}^2 \text{ s})$
Irradiation in air
p^+ radiation tests at 100 & 230 MeV
Low energy (10 MeV) proton radiation test

KTA, after $6.5 \times 10^{11} \text{p}^+/\text{cm}^2$

darkening

LBO, after $6.5 \times 10^{11} \text{p}^+/\text{cm}^2$

no darkening
Test philosophy:
3 year equivalent orbital dose
Gamma energy: 1.17 / 1.33 MeV
Typical radiation flux: 36 rad/min
ESA test specs:
100 krad overall dose

Strong degradation for Titanyls (KTP, RTP, KTA)
No degradation for Borates (BBO, LBO, BIBO)
Summary

• Operation of qualification test benches for high-power space laser optics (LIDT, LIC, raster scanning)

• Damage testing of all critical laser optics of ALADIN instrument (ADM mission)

• Sensitive in-situ monitoring technologies (eg fluorescence imaging)

• Identification of risks for laser optics in space (contamination effects may reduce the LIDT)

• Investigation of LIC mitigation effects (O_2 pressurizing)

• Exposure of nonlinear optical crystals to energetic radiation (borates show only minor effects)
Thank you for your attention

The support by ESA/ESTEC is kindly acknowledged!